Assignment: Real Life Derivatives
Now that we have explored the meaning of the derivative of a function, let's think about some things in our worlds that can be modeled using rates of change. My example is my 1969 Volkswagen Westfalia. It is obviously old and, because I live at the beach, it has to endure the harsh elements. So, what does this have to do with functions, you ask. Well, I am constantly worrying about rust. My function is the amount of rust on my VW as a function of time, R(t). As much as I wish it were not the case, I think this is probably an increasing function. The more rust there is, the more there is going to be. Perhaps a never ending battle with the elements. Oh to own a garage.
What is the meaning of the derivative of my rust function? Liebniz would consider dR/dt...the change in the amount of rust with respect to time. In other words, the amount of rust that is added at any given moment. Argh, continuous function? Does that mean my beloved Math-Mobile is rusting away as I write this? Maybe I should get out of here and start sanding and grinding. Ah but back to the Calculus...
In this blog, I want you to consider some function in your world and discuss the meaning of the derivative of your function.
What is the meaning of the derivative of my rust function? Liebniz would consider dR/dt...the change in the amount of rust with respect to time. In other words, the amount of rust that is added at any given moment. Argh, continuous function? Does that mean my beloved Math-Mobile is rusting away as I write this? Maybe I should get out of here and start sanding and grinding. Ah but back to the Calculus...
In this blog, I want you to consider some function in your world and discuss the meaning of the derivative of your function.